
AD-A34 808 SOFTWAREMANTANABII FACTORSFOR THEATCSYSEM 5/

COMPUTER REPLACEMENT PROGRAM(U) SYSTEMS AND APPLIED
SCIENCES CORP RIVERDALE MD H HECHT APR 80

UNCIA SAS C-CD-7260-00 DOT-FA7gWAI-081 F/G 9/2 NLIEIEIIIIIIIEE
IEIIIIEEEEEEEI

11111- 2 U 112.2
Ig 13 12.0lll=L.

1-2 1.1 140
IIII1 III II l~l

MICROCOPY RESOLUTION TEST CHART

NATIONAL S4tE[Au OF STA4OAMOS-S63-A

j-,

PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

p "ERo-. No. 5ASC- C - Ooo.

~ Hedit H D~fMENT IDENTIFICATION Fine(,fv'O
j C*t~cfboT-R- lqWRI-oa

DISTPlITrin_ S'TITMENT A
' Apr: ~vcd' Iot t,:'i eleatse;

Distzibul;on Uilmaited

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRAM
DTIC TAB DTIC
UNANNOUNCED Q ELECTE
JUSTIFICATION S OV8 ID

B S D
BY0
DISTRIBUTION /
AVAILABILrrY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

88 1 195 177

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DTIC FORM 70A DOCUMENT PROCESSING SHEETCTIo7970

SOFTWARE MAINTAINABILITY FACTORS
FOR THE ATC SYSTEM

COMPUTER REPLACEMENT PROGRAM

APRIL 1980
A 4 FINAL REPORT

Document is available to the U.S. public through
the National Technical Information Service,

Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service
Washington, D.C. 20590

Technical Report Documentation Page
1. Reolart No. 2. Go-o-~moint Accits-o, No. 3. Recipient v Catalog N.

4. 1a. and Soil.I 5. Report Date

Software Maintainability Factors for the I April 1980
ATC System Computer Replacement Procgram 6. Pe.Fafflmg O'o'ao Cade

7. Ai~te~a)SASC-CD-7260-001
Dr. Herbert Hecht/SoHaR Inc.

9. Performing Organization Nam n* Adrss1.WokUitNoT A

Systems and Applied Sciences Corporation _____________

6811 Kenilworth Avenue 17. Contract or G'~r N.

Riverdale, MD 20840 DOT-FA-79WAI-081
13. Type aioor and P*-..0 Co~ved

112. Seaesing Agenlcy Name anid Addressoi a R p r
UJ.S. Department of Trans-ortatir.
Federal Aviation Adiinistratir _____________

SysemsResarc an Deelor'.~t ervce 14 Soomsor~vig Agency :.,dsysemsResarc an 11Devlopent_5 7 ic eARD-131Washinaton D.C. 20591

16. Abiroci

The purpose of the Software Maintainability Factors Study
is to identify detail elements of software design and development
that enhance the maintainability of the resulting software product.
As part of the Software Maintainability Factors Study, the extensive
literature on software maintainability has been surveyed and key
concepts that deal with maintainability factors have been synopsized.
These approaches are then analyzed in the light of specific require-
ments of the ATC environment.

1Alyinellainablity factor 4'rotjn~atiet

Software designs.
Software development

19. sou t clssf (of rhos ~fai X. soc I or -' 749@f 21. 149 or P390o; ::.

Ulnclassified

Form DOT F 1700.7 s ~ Roproduciin 3- :*cmoetea zoge cuthori zed

, , --- ,. i i-- 1i,.1ii i i i ,
- - "." .,

- --

I -
,,,-.0,,.

* ; I'- "- -; ". -

- -,.~ -~ *-8~-= = -- - ~ - S

4 i -v

.5 2

* ,,-

S W I i - -

a lj!!i .s... ' i'

- - -*- .ti,

" } z ,..-,.:,,1. ..

r . SI * a=l

a!

iii! '

TABLE OF CONTENTS

Section 1 - Introduction 1

1.1 Scope of Maintainabiity Factors Study 1
1.2 Definitions of Maintainability. 1

Section 2 - Factor Identified in Prior Literature 5

2.1 Quality Factors 5
2.2 Reason for Change Factors 7
2.3 Activities Factors. 9

Section 3 - Evaluation 11

3.1 Quality Factors. 11
3.2 Reason for Change Factors12

3.3 Activities Factors 13

Section 4 - Recommendations. 14

References 17

Appendix -Definitions of Maintainability Factors. 18

j

PAGE 1

S~ECTION I
TNTRODUCTION

This report on the Maintainability Factor Study is the first

document generated under Task 10, Software Reliability/

Maintainability Survey, of the Air Traffic Control Computer

Replacement Program V&V Subprogram. Subsequent deliverables

under this task deal with reliability factors, and with design

techniques and development techniques that enhance reliability

and maintainability.

The following paragraphs of this introduction describe the

scope of the maintainability factors study and discuss definitions

of maintainability applicable to the ATC Computer Replacement

Program.

1.1 SCOPE OF THE MAINTAINABILITY FACTORS STUDY

The purpose of the Maintainability Factors Study is to

identify detail elements of software design and development that

enhance the maintainability of the resulting software product.

Requirements for the design structures and development techniques

that will provide a highly maintainable software base for the ATC

Computer Replacement Program will be generated in subsequent

effort under Task 10.

As part of the Maintainability Factors Study the extensive

literature on software maintainability has been surveyed, and key

concepts that deal with maintainability factors have been

synopsizedin section 2 of this report. These approaches are then

analyzed in the light of specific requirements of the ATC

environment in section 3, and a set of factors that is well

suited for that environment is identified in section 4.

1.2 DEFINITIONS OF MAINTAINABILITY

The definitions of maintainability offered in the existing

PAGE 2

software literature fall into three broad categories: those based
on computer systems concepts (applicable to hardware and

software), those viewing maintainability as a primary measurable

quantity, and those viewing maintainability as composed of a
number of more elementary factors (composite definitions).

1.2.1 Computer System Based Definition

The general definition of maintainability applicable to
defense systems is the prototype of this category:

A characteristic of design and installation which is
expressed as the probabilty that an item will be retained
in, or restored to, a specified condition within a given
period of time, when the maintenance is performed in
accordance with prescribed procedures and resources [l].

The draft of a recent computer dictionary offers the

following related formulation:

The ease with which maintenance of a functional unit can
be performed in accordance with prescribed requirements

[2].

In the same dictionary, maintenance is defined as "Any

activitity intended to keep equipment or programs in satisfactory
working condition".

1-2.2 Direct Measurement Definitions

A typical definition of this type is:

Maintainability is the probability that, when maintenance
action is initiated under stated conditions, a failed
system will be restored to operable condition within a

specified time. [3]

Although no specific software terms are mentioned in the
definition, it appears under a heading of "Software

- -

PAGE 3

Maintainability Measurement" and it is definitely aimed at

computer programs. This defintion has also been adopted as an

alternative in a recent software glossary [4].

1.2.3 Composite Definitions

A very concise definition in this category is:

Code possesses the characteristic maintainability to the

extent that it facilitates updating to satisfy new

requirements or to correct deficiencies. This implies

that the code is understandable, testable, and modifiable

'5].

This definition has been adopted as the primary one in the

above mentioned software glossary [4]. Related definitions are

presented in several sources under the entry "Maintainable".

Thus,

A maintainable software product is one which is

understandable, testable, and easy to modify [5].

In other formulations, the identification of elements has

been expanded [3,4], e. g., modifiability is described as
applicable to both the program and the documentation. This

expansion does not represent a benefit for the present effort
because it is only an intermediate step toward an analysis of the

factors of maintainability which is the subject of the following

section.

1.2.4 Definition Adopted Here.

Although the ATC environment places a high premium on
systems oriented measures of reliability and maintainability (i.

e., those that are consistent for hardware and software), it is

not believed that the definitions presented in 1.2.1 are

suitable. The primary difficulties are (a) that software
maintenance is frequently undertaken while the system is

PAGE 4

operable, and that therefore the time to restore service is not
an appropriate measure, and (b) that restoration of service can

frequently be accomplished by temporary measures that do not

constitute software maintenance (e. g., program restart).

Essentially the same objections also apply to the definitions

discussed under 1.2.2.

The composite definitions are found to be more suitable, and

the first one discussed under that heading is the most general
one. Because it is the purpose of this volume to identify

factors that contribute to maintainability we do not at this time

wish to prejudice this effort by including the implicit factors

identification in the second sentence of that definition. For

this reason it will be modified to the form:

Maintainability is a characteristic of software that

permits it to be easily updated to satisfy new

requirements or to correct deficiencies.

PAGE 5

FACTORS IDENTIFIED IN PRIOR LITERATURE

There is a fairly extensive literature on factors that

affect the maintainability of software. The significant

contributions to the field can be broken down into three distinct

categories:

Quality factors

Reason for change factors

Activity factors

These are discussed in this sequence in the body of this section.

2.1 QUALITY FACTORS

The pioneer work in this category was published as a TRW

report in 1973 [5], and excerpts or updates of this can be found

in the professional as well as in the trade literature, e. g.,

[6, 7]. As part of an overall hierarchical structure of software

quality factors, the primary ones affecting maintainability were

identified as testablity, understandability, and modifiabilty.

Note that this structuring has now been included in some of the

definitions of maintainability (see 1.2.3 of this volume). On

detailed examination, these factors were seen to be decomposable

into primitives of consistency, accessibility, communicativeness,

structuredness, self-descriptiveness, conciseness, legibility,

and augmentability.

A further significant work in this category was published as

an RADC report by a group of researchers at General Electric,

Sunnyvale [8]. Maintainability is here broken down directly into

five primitives: consistency, simplicity, conciseness,

modularity, and self-descriptiveness. The reference equates

modularity with structuredness, and it is thus seen that four out

of these five primitives are identical with those identified in

PAGE 6

the TRW study. The one least matchable is simplicity, which

partly overlaps the legibility factor among the TRW primitives.
Definitions of the factors are provided in the Appendix.

I MAINTAINABILITY
REF. [51 REF. [81

ACCESSIBILITY

TESTABILITf COMMUNICATIVENESS

SELF-DESCRIPTIVENESS

STRUCTUREDNESS

(MODULARITY)

CONCISENESS
UNDERSTANDABILITY

ONSISTENCY

LEGIBILITY

MODIFIIT AUGMENTABILITY

SIMPLICITY

FIGURE 2 - 1

MAINTAINABILITY FACTORS FROM REFS. [5] AND (8]

PAGE 7

A comparison of the quality factors for reliability as

defined by TRW and GE is shown in figure 2-1. It is seen that

the GE study does not consider communicativeness, accessibility,

and augmentability. These omissions are due at least partly to a

very narrow definition of maintainability as exclusively

concerned with error correction: "Effort required to locate and

fix an error in an operational program". As will be discussed

below, this does not appear to be an adequate scoping of software

maintenance for the ATC environment.

2.2 REASON FOR CHANGE FACTORS

In a 1976 paper (9], E. B. Swanson called attention to the

variety of reasons for performing software maintenance, and to

the different capabilities and activities that are involved in

these. He classified the reasons for change into major

categories, termed bases for maintenance. A summary of his

classification scheme is presented in table 2 - 1.

TABLE 2 - 1

REASON FOR CHANGE FACTORS

A. Corrective Maintenance

1. Processing Failure

2. Performance Failure

3. Implementation Failure

B. Adaptive Maintenance

1. Change in Data Environment

2. Change in Processing Environment

C. Perfective Maintenance

1. Processing Inefficiency

2. Performance Enhancement

3. Maintainability

h7

PAGE 8

Processing failures are those which result in abnormal

output; performance failures are those in which normal output is

furnished but system requirements are not met. All other

corrective maintenance actions are termed implementation

failures, and these include specifically changes to comply with

design or coding standards. Although specific data are not

provided in the paper, it can be assumed that performance

failures will usually require a large maintenance effort,

processing failures a smaller one, and implementation failures

the least. The structure within the Corrective Maintenance

category is therefore meaningful in scoping both the magnitude of

the maintenance effort and the techniques that can be brought to

bear on it. Note also that only types Al and A2 are covered by

the definition of maintainability adopted in (8], and that a

strict interpretation of the definition may even exclude A2.

The subclassifications under Adaptive Maintenance are

self-explanatory. Here it is not possible to associate specific

levels of maintenance effort with each entry (e. g., change in

data environment may involve a single data item or an entire

restructuring of the data base). However, the classes are

significant in term of the applicable maintenance techniques.

Perfective maintenance in substituting a more efficient

algorithm or in use of a more appropriate language construct

falls into the classification of "Processing Inefficiency". The

"Performance Enhancement" class includes changes in report

formats (e. g. for better readability) or in providing additional

output data. The last entry in the Perfective Maintenance base

are changes that are made to improve the maintainability of the

code and which presumably do not affect either the output or the

processing proper. The classification here is particularly

significant in identifying different requester groups:

performance enhancements are typically requested by the user,

changes in processing to remove inefficiencies may be requested

PAGE 9

by the computer operations group, and maintainability changes by

the software maintenance personnel. Again, attention to these

differences will be helpful i- pointing to appropriate

maintainability techniques.

Swanson proposed this classification in order to analyze

maintenance activities and to generate measures of maintenance

performance. The classification is of interest also for

assignment of proper tools and techniques and should therefore be

regarded as a contributor to the maintainability factors that are

being evaluated here. A vague attempt to incorporate the bases

in a classification of maintenance activities has already been

reported [10].

2.3 ACTIVITIES FACTORS.

In a recent paper, T. Gilb has described the activities

required for software maintenance in considerable detail [11].

The resulting activities categories may be of value in analyzing

the maintenance effort and are therefore evaluated here. The

specific activities described in the reference are:

TABLE 2 - 2

ACTIVITIES FACTORS FROM (11]

1. Problem Occurrence

2. Problem Recognition

3. Administrative Delay

4. Maintenance Personnel Assigned

5. Collection of Maintenance Tools and Documentation

6. Analysis of Need

7. Evaluation of Alternative Corrections

8. Active Correction

9. Test

10. Side-effect Test

11. Independent Quality Inspection

PAGE 10

To this list should be added documentation of the maintenance

action and all steps necessary to introduce the changed program

to the user (in the ATC environment this will involve

administrative as well as technical activities).

Another list of activities is presented in (9], apparently

at least in part derived from the classification discussed above.

These activities have been related to three major functions as

shown in table 2 - 3.

TABLE 2 - 3

FUNCTIONS/ACTIVITIES MATRIX FROM [10].

Activities Affected Functions

Understanding Modifying Revalidating

Error Identification x x

Requirements Analysis x

Redesign x x x

Code Production x x

Test & Integration x

Documentation x x

Quality Assurance x x

Configuration Mangmt. x x x

It is interesting that the functions identified here are closely

related to the major quality factors (testability,

understandability and modifiability) used in (5]. This matrix

therefore represents a tentative step in associating activities

with quality factors.

... . . - --n- --- n-...-...

PAGE 11

EVALUATION

In this section the maintainability factors described in the

preceding section are evaluated in the light of requirements for

an advanced air traffic control system. The structure of this

section follows that of the preceding one in discussing quality,

reason for change, and activities factors in that order.

3.1 QUALITY FACTORS

All of the factors discussed in the preceding section are

useful in analyzing the software maintenance process. Quality

factors have the additional merit that they offer an explicit

means of affectin- the process in a beneficial manner. It is
like not only talking about the weather but also doing something

about it. They are therefore a prime candidate for inclusion in

a Reliability/maintainability Program for the ATC Computer

Replacement Program.

The quality factors proposed in the TRW report [5] have been

scrutinized both inside the company and by the software community

at large, and in general they have been found valid. The major

factors (testability, understandability, and modifiability) have

found their way into widely accepted definitions, and as shown in

the preceding section, have been used as a cross-reference in

other factor studies. The factors identified in [5] cover

maintenance initiated because of errors in the existing software

as well as maintenance requested for other reasons. A weakness

of the approach is that the metrics for the primitives are not

uniformly precise, and that evaluation of programs against these

factors is therefore necessarily subjective.

The quality factors used in the GE study [8] are all

expressed as precise metrics, and, due to this, quantitative

effects on maintenance effort can be more readily demonstrated.

-. -_ _ _ _ _ _ _ _ _ _ _

PAGE 12

This represents a desirable feature, but it also involves some

limitations: because of the exclusively metric approach, some

factors that are not easily quantified had to be omitted; and the

metrics are so specific that they may become obsolete as new

programming practices or computing equipment come into use. The

quality factors used by GE are targeted at corrective

maintenance. Factors that are significant primarily for adaptive

or perfective maintenance are not covered. In this respect these

metrics do not meet the requirements of the ATC Computer

Replacement Program.

3.2 REASON FOR CHANGE FACTORS

The reason for change factors are by themselves primarily an

analytic tool. Classification along these lines is obviously

desirable to control the workload in a maintenance organization

or when major procedural changes are being considered. Such

decisions are not within the present scope of the ATC Computer

Replacement Program. Nevertheless, the reason for change has to

be considered in evaluating the importance of quality factors.

Thus, qualities contributing to testablity will be particularly

important when corrective maintenance is being performed while

modifiability will be more important when adaptive or perfective

maintenance is undertaken.

It is expected that the reasons for change will vary with

the maturity of the principal software run on the ATC system.

When new software is introduced, corrective maintenance will

predominate, followed by a phase during which considerable

perfective maintenance will be accomplished, and finally a phase

during which the emphasis will shift to adaptive maintenance.

For this reason, the weighting of quality factors may also change

with the software life cycle. Reason for change factors are

considered in this context in the recommendations discussed in

the next section.

PAGE 13

3.3 ACTIVITIES FACTORS

Activities classifications are also primarily of interest in

the analysis of workloads and in organizational decision making.
It is difficult to infer from either of the two activities

classifications presented in 2.3 specific software qualities that
will reduce maintenance requirements. Table 2 - 3 implies that a

high rating with regard to the major quality factors will h~ve a
beneficial effect on the specific maintenance activities listed
there. It is therefore not considered necessary to include an

activities classification with the primary maintainability

criteria that will be developed under this task.

Some insights into features that benefit maintainability can
nevertheless be gained by considering the detail maintenance

activities. E. g., that seven steps are necessary according to

E11] before the active correction phase is entered suggests that
aids to problem location and isolation will have a high payoff.

For this reason, a modified form of the activities list presented

in [i1] is included in the recommendations as an aid to further

work in the maintainability area. The activities factors in [11]
were selected as a starting point because they are more detailed

than those identified in (10].

PAGE 14

ECTTON 4
RECOMMENDATIONS

As indicated in the preceding section, the quality factors

provide the most direct approach for assuring that software
generated for the ATC Computer Replacement Program will be easy
to maintain, and it is therefore recommended that these factors
be used in the formulation of software requirements. Among the

two formulations of quality factors, the one proposed by TRW [53

appears more seasoned and comprehensive. Deficiencies in

quantitative metrics can be corrected by either adapting suitable
metrics from [8] (the agreement at the primitive factors level

permits this in many cases), and by generating new metrics. It
is also noted that metrics are less significant for software

procurement than for the evaluation of existing software. E. g.,

adherence to a hierarchical structure can be made a requirement,
and it is then not necessary to have a metric for deviations from
hierarchical structure.

Because there can be conflicts among requirements imposed by
various quality factors, and because imposition of any

requirement usually involves a cost, it is recommended to
identify priorities among the quality factors. At present a
binary classification (high/low priority) appears adequate. The

priority rating is to some extent affected by the type of
maintenance to be undertaken, and that characteristic can be

described in terms of reason for change factors. Table 4 - 1
shows the priority assigned to the maintainability primitives

from [5] under the major reason for change classifications

developed in 19].

PAGE 15

TABLE 4 - 1

MAINTAINABILITY FACTORS AND PRIORITY ASSIGNMENTS

Factor Reason for Change

Correct. Adaptive Perfective

Consistency x x

Accessibility x

Communicativeness x x

Structuredness x x x

Self-descriptiveness x

Conciseness x

Legibility x

Augmentability x x

x = high priority, all others low priority

The factors identified here will be used to guide the effort

for software maintenance in the continuation of task 10. In

addition, it is recommended that this effort consider the

specific activities listed in table 4 - 2 in the establishment of

maintainability criteria for the ATC Computer Replacement Program

software.

PAGE 16

TABLE 4- 2

ACTIVITIES FOR SOFTWARE MAINTENANCE

1. Problem Occurrence

2. Problem Recognition

3. Administrative Delay

4. Maintenance Personnel Assigned

5. Collection of Maintenance Tools and Documentation

6. Analysis of Need

7. Evaluation of Alternative Corrections

8. Active Correction

9. Test

10. Side-effect Test

11. Independent Quality Inspection

12. Documentation

13. Trial Use

14. Configuration Management

PAGE 17

[1] MIL-STD-721B "Military Standard, Definitions of
Effectiveness Terms for Reliability, Maintainability, Human
Factors and Safety", NAVAIR for Dept. of Defense, 25 Aug 1966
(w/Notice 1, 10 Mar 1970)

[2] Computer Dictionary (Draft Standard), IEEE Computer Society,
1979

[3] T. Gilb, Software Metrics,Winthrop Publishers, Cambridge MA,
1977

[4] S. A. Gloss-Soler, The DACS Glossary. A Bibliography of
Software Engineering Terms, Data and Analysis Center for
Software, Griffiss AFB NY, October 1979

[5] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. McLeod,
and M. J. Merritt, Characteristics of Software Ouality,
TRW-SS-73-09, TRW Systems, Systems Engineering and Integration
Division, Redondo Beach CA, December 1973

[6] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative
Evaluation of Software Quality", Proceedings of the Second
International Conference on Software Engineering, San Francisco
CA, Oct 1976, IEEE Cat No 76 CH1125-4C, pp. 592 - 605

[7] B. W. Boehm, "Software and its Impact: A Quantitative
Assessment", Datamation, Vol 19 No 5, May 1973, pp.48 - 59

18] J. A. McCall, P. K. Richards, and G. F. Walters, Factors in
Software Quality, RADC-TR-77-369 (3 Vols.), November 1977

[9] E. B. Swanson, "The Dimensions of Maintenance", ProceedingA
of the Second International Conference on Software Engineering,
San Francisco CA, Oct 1976, IEEE Cat No 76 CH1125-4C, pp. 492 -
497

[10] J. D. Donahoo and D. Swearinger, A Review of Software
Maintenance Technology, RADC-TR-80-13, February 1980

111] T. Gilb, "Controlling Maintainability: A Quantitative
Approach to Software". Available from Data and Analysis Center
for Software, Griffiss AFB NY 13441.

a -

PAGE 18

APPENDIX
DEFINITIONS OF MAINTAINABILITY FACTORS

The following are definitions of detailed maintainability
factors, termed 'primitives' in [5] and 'criteria' in [8], as
given in these respective references. The listing is

alphabetical. Where definitions from both references are

available, that considered more applicable to the ATC Computer

Replacement Program is preceded by ***.

ACCESSIBILITY

A Software product possesses accessibility to the extent
that it facilitates the selective use of its components (5].

AUGMENTABILITY

A software product possesses augmentability to the extent
that it easily accomodates expansions in data storage

requirements or component computational functions (5].

(EXPANDABILITY - not a criterion for maintainability)

Those attributes of software that provide for expansion of
data storage requirements or computational functions [8].

COMMUNICATIVENESS

* A 3oftware product possesses communicativeness to the extent
that it facilitates the specification of inputs and outputs whose

form and content are easy to assimilate and useful [5].

(not a criterion for maintainability) Those attributes of
software that provide useful inputs and outputs that can be

assimilated [8].

PAGE 19

CONCISENESS

* A software product possesses conciseness to the extent that
no excessive information is present [5].

Those attributes of software that provide for implementation
of a function with a minimum amount of code (8].

CONSISTENCY

A Software product possesses internal consistency to the
extent that it contains uniform notation, terminology and
symbology within itself. The product possesses external
consistency to the extent that the content is traceable to the

requirements [5].

The attributes of software that provide uniform design and
implementation techniques and notation. [8].

LEGIBILITY

A software product possesses legibility to the extent that
its function and those of its component statements are easily
discerned by reading the code [5].

SIMPLICITY

Those attributes of software that provide implementation of
functions in the most understandable manner. (Usually the
avoidance of practices that increase complexity) (8].

SELF-DESCRIPTIVENESS

* A software product possesses self-descriptiveness to the
extent that it contains ehough information for a reader to
determine its objectives, assumptions, constraints, inputs,

PAGE 20

outputs, components, and status 15].

Those attributes of software that provide explanation of the
implementation of a function [8]

STRUCTUREDNESS

A software product possesses structuredness to the extent
that it possesses a definite pattern of organization of its

interdependent parts [5].

(MODULARITY) Those attributes of software that provide a
structure of highly independent modules [8].

